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Motivation

You are a carrot farmer. The amount of carrots that you plant
plays a part in how much carrots cost in the store, and hence how
much profit you make on your harvest.

I Too many carrots planted → glut in the market and low profit.

I Too few carrots planted → unexploited demand for carrots
and low profit.

The connection between carrots planted and profit is complicated!
We will model this as a stochastic optimization problem, in an
attempt to deal with the random components of this model
(weather, economic climate, transportation costs, etc.).



Motivation

You are a carrot farmer. The amount of carrots that you plant
plays a part in how much carrots cost in the store, and hence how
much profit you make on your harvest.

I Too many carrots planted → glut in the market and low profit.

I Too few carrots planted → unexploited demand for carrots
and low profit.

The connection between carrots planted and profit is complicated!
We will model this as a stochastic optimization problem, in an
attempt to deal with the random components of this model
(weather, economic climate, transportation costs, etc.).



Motivation

You are a carrot farmer. The amount of carrots that you plant
plays a part in how much carrots cost in the store, and hence how
much profit you make on your harvest.

I Too many carrots planted → glut in the market and low profit.

I Too few carrots planted → unexploited demand for carrots
and low profit.

The connection between carrots planted and profit is complicated!
We will model this as a stochastic optimization problem, in an
attempt to deal with the random components of this model
(weather, economic climate, transportation costs, etc.).



Goal: Find a carrot planting decision θ∗ which minimizes your
expected loss.

I Model loss as a random function of your planting decision θ.

Loss ∼ q(x , θ) known

I x : random vector of external factors. Independent of θ.

x ∼ F (x) unknown

I Carrot Planter’s Problem (CPP)

min
θ∈Θ

Q(θ) = E[q(x , θ)]

I q : Rm × Rn → R
I Θ ⊆ Rn, set of possible decisions.
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min
θ∈Θ

Q(θ) = E[q(x , θ)] (CPP)

Assumptions

1. With probability 1, q(x , θ) strongly convex in θ, with uniform
modulus K . That is,

〈θ1 − θ2,∇q(x , θ1)−∇q(x , θ2)〉 ≥ K ||θ1 − θ2||2 x a.s.

2. We have access to a random variable y ∼ P(y , θ) with the
property that

E[y |θ] = ∇Q(θ).

3. y has second moment uniformly bounded in θ.∫
Y
||y ||2 dP(y , θ) ≤ C 2 ∀θ ∈ Θ.

4. Q is differentiable, so (CPP) is equivalent to solving
∇Q(θ) = 0.
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(2) says we must have access to an unbiased estimator of our
gradient.

For many common loss functions this is true, e.g. squared loss:

q(x , θ) =
1

2
E[||Aθ − x ||2]

⇒y ∼ ∇q(x , θ) = AT (Aθ − x) satisfies

E[y |θ] = E[∇q(x , θ)|θ] = E[AT (Aθ − x)|θ] = ∇Q(θ)

The last equality follows from the mild regularity assumptions that
allow us to interchange derivative with integral. Know them!
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I We would like to find a minimizer of Q(θ) without ever
attempting to calculate the expectation that defines it.

I Why? It involves random factors that are nasty!

I Instead, we will build a sequence θn which depends on random
samples from y ∼ P(y , θ) for different θ.

I Hope to generate iterates from samples which allow us to
minimize the expectation.

I We want θn to be a consistent estimator of θ∗. That is

∀ε ∃N s.t. n ≥ N ⇒ P(||θn − θ∗||2 > ε) < ε

i.e. θn → θ in probability.
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Facts of Life Give references!

1. L2-convergence implies convergence in probability. That is,

E[||θn − θ||2]→ 0⇒ ||θn − θ||2 → 0 in probability.

2. A convex function defines a monotone operator. That is, if
f : Rn → R is convex, then

〈∇f (x)−∇f (y), x − y〉 ≥ 0

3. f (ξ, x) convex in x for some ξ almost everywhere implies

F (x) = E[f (ξ, x)]

is convex.
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Theorem
Let an be a positive sequence which satisfies:

I
∞∑
n=0

a2
n <∞

I
∞∑
n=0

an
a0 + ...+ an−1

=∞

For some initial θ0, define the sequence

θn+1 = θn − anyn

Where yn ∼ P(y |θn). Then θn → θ∗ in probability.



Proof:

Because of F.O.L. 1, we will instead show L2 convergence.
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Proof:

Define bn = E[||θn − θ∗||2]. We want to show that bn → 0.
Have that:

bn+1 = E[||θn+1 − θ∗||2]

= E[E[||θn+1 − θ∗||2 |θn]]

= E
[∫

Y
||(θn − θ∗)− any ||2 dP(y |θn)

]

= bn + a2
nE
[∫

Y
||y ||2 dP(y |θn)

]
− 2anE[〈θn − θ∗,∇Q(θn)〉]
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by F.O.L. 2 and 3
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Great! This shows that limn→∞ bn exists. But is it equal to 0?

Consider the sequence

kn =
K

a1 + ...+ an−1

We have that

E[〈θn − θ∗,∇Q(θn)〉] ≥ KE[||θn − θ∗||2]

By strong convexity.
Rewriting, we then have

≥ Kbn ≥ knbn

for large enough n.
We proved previously that summing the an times inner product
above gives a convergent sequence! This gives that, since kn and
bn are both positive,

∞∑
n

anknbn <∞.
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So are there any sequences that satisfy the conditions in the
theorem?

I
∞∑
n=0

a2
n <∞

I
∞∑
n=0

an
a1 + ...+ an−1

=∞

Take an = 1
n . Square summable and

∞∑
n=0

1
n

1
1 + ...+ 1

n−1

≈
∞∑
n=0

1

n ln(n − 1)
≥
∞∑
n=0

1

n ln n
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Extensions and loose ends

I Actually converges with probability 1 (Blum).
I Convergence with rates

I E[Q(θn)− Q(θ∗)] ∈ O(n−1) (with strong convexity)
I E[Q(θn)− Q(θ∗)] ∈ O(n−

1
2 ) (without strong convexity)

I θn−θ∗√
n

is asymptotically normal. (Sacks)

I
√
n rate cannot be beat for general convex case. (Nemirovski

et al)


