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There are likely lots of errors, let me know if you find any.
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Analysis
Some tips for problems solving in analysis
(a) Read and do exercises out of Rudin.

(b) Know how to use inequalities.

201 Midterms and Practice Midterms

The following questions are pulled from various 201 midterms and practice midterms which I was able to
find on faculty webpages.

Problem (John Hunter Practice MT: Fall 2016). Let A be a subset of a metric space X. Define
the characteristic function x4 : X — R of A by

1 ifzxzcAd
XA(w)Z{

0 otherwise

Prove that A is open if and only if x 4 is lower semi-continuous.

Let A be open and x,, — z, € A. Then there exists a ball of radius r such that B,(z) C A and for
some N € N, n > N means that z,, € B,(x). Then

1= xa(x) =liminf ya(xy,).

Ty —T

Suppose = ¢ A. Then for any sequence x,, — x

xa(z) = 0 < limiinf x4 ()
Ty —T
and x4 is lower semincontinuous.
Conversely suppose that x 4 is lower semicontinuous and suppose for the sake of a contradiction that
A is not open. Then there exists some z € A such that for every r > 0, B.(z) N X \ A # @. Choose a
sequence x, — x such that each x,, € X \ A. Then
Xa(z) =12 0=liminf y4(x,)

Tp—T

which is a contradiction since x 4 is lower semicontinuous. Therefore A must be open as desired. |
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Spring 2020

Problem 1. Let f € S(R) be a Schwartz function. Suppose fR f(y)e*yze%y dy =0 for all z € R,
show that f = 0.

We begin by proving a small lemma.
(Convolution Preserves Pariety) Let f € S(R), be even, and let K € L'(R)NC°(R) be even,

then
= / fWK(@ —y)dy = / f(=y)K(z —y)dy
R R

- / F)K (@ +y)dy = / F@)KE((~2) - y) dy
R R
= (f +

K)(—=)

let f be even with the same hypothesis on K, then

(f * K)(x /f /f —y)dy
/ f@)E (@ +y)d /R FW)K((~2) — ) dy
K)(—)

as desired. O
Next recall the following facts

(i)
/R e dx = /7

(ii) For f € S(R), the Fourier inversion formula says

7) = /R (&) g

(iii)
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We are now ready to solve our problem. We have

/ Fy)eX™e " dy = / / f(e)ermiver2ov=y” e dy (ii)
R RJR
= [ Fe) [ e ay g (Fubini)
R R
= ewz/ f(f)e_”zee%mg/ e~ (v=(mit+a))? dy d§ (Complete Square)
R R

:'\/Ee$2/1;f(£)6_7r2€2627riw5d§ (1)

= Va5 e ) @) = 0 (i)

which implies that (f *e~*")(z) = 0. By (iv) we see that f is both even and odd, and hence f = 0. B

Problem 4. Suppose that f € L2(R) and f is continuous. Suppose that f = O(|¢|~179) as || — oc.
Show that |f(z 4+ h) — f(z)| < Ch* for all h > 0 and some constant C' independent of h.

We apply the inversion formula

We estimate

T T «
|e2mihé _ 1| _ (|62 zh£_1|) \62”"5—1|1_“
he h

2mihé 1‘ @
< 217(1 |€
(=

since |e2™irh — 1| < 2
By the mean value theorem we have that
7€ — 1] < 27[8]|€*™ €|k < 2mh¢]
where 0 < n < h.
Combining the above two estimates shows that
|62ﬂ—ih£ — 1| . Q¢ «

Note that whenever [£| < 1/(mh), 27%[€|* < 2.
Recall that f(£) = O(J¢|717%) means that there exist constants M, B € R>° such that whenever
€] > M, [£(§)] < Blg|~ .
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Choose N = max M, 1/(wh), then we estimate

' /R f(©)e . /|5<N+ /KM f(©)e “ U

. 2B
< - « d a2 —1l—« d
<o /£<Nf(g)|g| Rl N

1/2 )
< AT N© </|§|<N df) Hf‘

4
= 47r(’N(2N)1/2 ||f||L1(R) + ;TaN °B

<

€=

4
+-—N"“B
L2(R) h~

By our choice of N we have N~ < 7*h® so that we have shown

flx+h) = f(z)

s <227 M2 | f| 2 gy + 47°B =: C

as desired. ||

Problem 6. Find a sequence {fx} of continuous functions on R such that it is uniformly bounded
and equi-continuous but fails to have a subsequence that converges uniformly on R.

Let
0 , <k
fel@)y=<x—k k<x<k+1
1 , E+1l<x

it is clear that each fj is continuous, and it is also easy to see that that {fx} is uniformly bounded by
1, since |fi(z)] < 1 for all x € R.

We show that {f;} is equi-continuous. Given € > 0, chosse 0 < 6 < e. For z,y, |x —y| < J, z < y,
we have the following cases

o (x,y)N(k,k+1)=02.

In this case |fi(z) — fr(y)| =0 < e.
o (z,y) C(kk+1)

In this case we have

|fe(x) = i) =z —k—y+kl=[z—y|<d<e

o (z,y) Z (k,k+1)and (x,y)N(k,k+1) #@.

We have two further sub cases. First, suppose fr(y) = 1, then fr(z) =z —kand k <y <k+1
which means

lfe(z) = fry) =z —k—-1<|z—y|<d<e
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Next, suppose fi(y) =y — k, then fi(z) =0 and k <y < k+ 1 and we have that
[fr(@) = @) =k —y| < |z -yl <d<e

This proves that {f;} is equicontinuous.

Next note that fr(z) — 0 as k — oo for all € R since for any z, fi(z) =0 for all k£ > z.

Choose any subsequence f; of {f;} and suppose for the sake of contradiction that f; converges
uniformly. Then for every ¢ > 0 we have that |f;(x)| < e forall x € R, j > J for some J € IN. However
it is easy to see that if we choose z > j, | f;(x)| = 1 and hence |f;(x)| £ € in general. Since {f;} was an
arbitrary subsequence, no subsequence converges uniformly.
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Fall 2019

Problem 1. Let H be a seperable Hilbert space with orthonormal basis {ej}ren and suppose A €
B(H) is such that

o0
> Il Aex||* < o0
k=1

Prove A is compact.

An operator A satisfying this condition is known as a Hilbert-Schmidt operator.

We proceed in three parts. We start by showing that the uniform limit of compact operators is
compact. Then we show that Py, the projection onto the N-th dimensional subspace spanned by the
first N basis elements is compact. Finally we show that PyA — A uniformly in the operator norm
topology.

(1) Let X,Y be Banach and let T,, : X — Y be a sequence of compact operators converging in
the operator norm to T': X — Y, that is ||T,, — T|| — 0 as n — oo. Recall that a subset E C Y is
pre-compact if and only if it is totally bounded.

Let B C X be any bounded subset and € > 0 be given. Let M > 0 be such that for all x € B,
||z[| < M. Choose N € N such that ||[Ty — T'|| < 557. Since Ty is bounded, there is a finite indexing
family J of points t; € Tv(B) such that {t;},c7s is an £/2-net of T (B). Let € B, then

[ Tvz —Tz|| = |[(Ty = T)zl|| < [|Tn = Tl [|2|] < %
so that Tz € B.(t;) for some j € J. Therefore {t;};cs is an e-net of T(B) and T is compact, as
desired.

(2) Let X be a seperable Hilbert space and let Py : X — X be the projection operator. The
range of Py is finite dimensional (and hence Py is finite rank). Note that Py(B) is bounded since
[|Pnz|| < ||z|| < M for all z € B. Let z;, be a sequence in Py(B). Since Py(B) is a finite dimensional
vector space and zy is bounded, z; has a convergent subsequence. Hence Py (B) is precompact and
Py is a compact operator.

(3) We have

1P Al = sup [Py Az A
z||=1

= sup Z |(Az, ep,)|? (Parseval’s)
[lz]]=1 k>N

< sup Z |(Aeg, ex)|? (Expanding z in basis)
llell=1 5

sup Z || Aex||? (Cauchy Schwartz)

[lz]]=1 k>N

= > el

k>N

N

so we can see that we may choose N large to make the norm of PyA — A as small as possible since

2
Yren [[Aex]]” < oo
Therefore A is a compact operator. |
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Problem 4. Suppose f € C*([0,1]) with f(0) = f(1) =0 and ||f]|;> = 1. Show that

DN =

1 @) 2 |z f (@)l 2 =

(c.f. Spring 2016 Problem 4: This is the first step towards proving the Heisenburg uncertainty principle)

‘We compute

1
d
L=l = P - PO) = [ o () de (1BP)
0 X
1
= —2/ zff dz
0
1
<2 alfl)as
0
<2z fll 2 1112 (Holder’s)
which is well defined since f € C' = f € H!'. [ |

Problem 5. Suppose f € L?(R). Suppose fR f(y)e_yze%y dy = 0 for all x € R. Show that f =0.

See Spring 2020 Problem 1. ]
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Spring 2019

Problem 1. Consider the Hilbert space L?(T) of complex valued square integrable functions with the
inner product given by

(f.9) = /T F@g(e) de

(a) For all ¢ € R, define g,(0) = sin(f + ¢) for § € [0,2n]. Let V be the closed linear span of
{gw | peR } Show that V' is two-dimensional.

(b) Find k : T x T — C such that for all f € L?(T) the integral operator K defined by

Kf(z) = /T ke, 1) F @) dy
satisfies

I1Kf = fll=inf{|lg—fll [g€V}

(a) We claim {sin(6),cos(#)} is a basis for V, from which it follows that V is two dimensional.
Note that for any g € V, we can write

9(6) =Y g,(0)

peA

=sinf Z cos p + cosf Z sin ¢
peA peA

for some finite collection of real numbers A by the angle sum and difference formulas.
We show that given any «, 8 € R, we may write

o= Z cos and b= Z sin

pEeAL peAg

Note that it is clear that go(f) = sin(0), g»(0) = —sin(f), gr/2(0) = cos(f), and g_,/2(0) =
—cos(0) so we can obtain any integer «, 8 by repeated addition of these elements.

Let & be the fractional part of o and 8 be the fractional part of 3. If we can obtain any fractional
part, then we are done and {sin#, cos 0} is a basis of V.

Let 0 < & < 1 and choose ¢ such that cos(¢) = &/2. Then
9o(0) + g—x(0) =2cosp = &

Similarly, let 0 < 8 < 1 and choose ¢ such that sin(p) = 3/2. Then

gcp(e) + gw—w(e) =2sinp = 3
as desired. O

(b) We are looking for the unique element in V' closest to range of the integral operator K, which is
a subset of L?(T).
|
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Problem 6. Let Q = (0,1) C R. For @ := [, udx, show that

[lw = Gl oo 0,1y < 24l 20,1y VueWh(Q).

We have
1
u(e) = [ u(o) - uly) dy
0
1 T
= / u'(n) dn (WP FTC (Brezis 8.2))
0 Jy
1 a 1 1
<[ [ wenan< [ [ welan (sup & and y)
0 Jy o Jo
= ||| ;2 < W]z (Holder’s with 1 and )
sup over z on both sides to obtain the inequality. [ |

10
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Fall 2018

Problem 1. Let f:[0,1] — R be a continuous function. Prove that
1
lim f(x)sin(nmx)dx =0

n—roo 0

(c.f. Spring 2017 Problem 5)

This is the well-known “Riemann-Lebesgue lemma”, it is more generally a statement about the coeficient
decay of the L? Fourier expansion for f. We will prove this result in three different ways. Note that all
proofs hold for e in place of sin(nmx) which is a more general result.

The first proof is the “unsophisticated” proof, presented before the notions of measure theory,
using only undergraduate notions of continuity. The other two proofs use approximation properties of
continuous functions.

Proof. Let x =& + % for an integer n, then

1 . 1-1/n 1N\
/0 f(z)sin(nrax) de = 7/ f ({ + n> sin(nm§) d¢

—1/n
Consequently

1-1/n

2 /0 @) sin(nma) di = /0 " b sin(nma) di /

—1/n

f (g + ;) sin(nne) de
_ /011/n (f(z)— f (:c + Tll))sin(mr:r) dx

+ /11 f(z) sin(nrx) dx

—1/n

0 1
- / f (x + ) sin(nnz) dz
—1/n n
=I+J-K

Since f is continuous on [0, 1], it is uniformly continuous and hence bounded by a constant M > 0.
Then

1
Il <M |sin(nmz)|de <
1-1/n

=5

and

=I5

0
|J] gM/ | sin(nmrz)|dx <
—1/n

Since f is uniformly continuous, given any € > 0 we may choose n large enough so that |f(z) —

11
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flx+1/n)| <e/3 for all x € [0,1]. This shows that

1-1/n
wi< [ 1@ - g (14 1) singumo) o

c 1-1/n
< f/ |sin(nmz)| de <
3 Jo

<
3

Choose n to be the smallest such n such that |I|,|J| and | K| are all less than £/3. Then

1
/ f(@)sin(nra) dz| < |I|+|J] +|K| < 3% =c
0

as desired. [

Proof. By the Weierstrauss approximation theorem f can be approximated by a sequence of polynomials
pr : [0,1] = R such that |[f —pg||,~ — 0 as k — oo. Let € be given and choose N such that
l|f — pill o« < /2 whenever k > N. Then a simple estimate shows

1
< / Ip(2) — £(2)|| sin(nmz)| da

< k= fll o [[sin(nra)|| 12
<€

1
/O (pi(@) — £(2)) sin(nmz)

Next, for any fixed k£ we may choose an n depending on k such that

1 1
= [0 - nl+ [l <o
nm 0
since py, is a polynomial and hence bounded on [0, 1].
Note that a polynomial pj, can be differentiated and integrated on the interval [0,1]. Hence we
estimate, integrating by parts and choosing a sufficient n depending on k as above

/01 f(x)sin(nrx) dx

< +

/0 (f(z) - pr(a)) sin(nmz) / pi(z) sin(n)

1 I
<i+ ‘—mpk@:) cosuna) + = [ pia) cos(nma) da

1
< %+% |:|pk(0)—pk(1)|+/0 pL(w)Idw]
<e

as desired. | |

Proof. Since f is continuous on [0, 1] it is L'([0,1]) and can be approximated by a sequence of simple
functions ¢x(z)  f(x) as k — oo. Since simple functions are dense in L', given any £ > 0 we may
choose an N large enough that ||f — ¢r||,» < ¢/2 whenever k > N and hence by Hélder’s inequality

/0 (f(z) = pr()) sin(nma) de| < |[f = @rll g1 |lsin(nmz)|| e <e/2

J

Given any € > 0 and any simple function ¢y (z) := Zle o x 45 (), choose n such that = > |alpha|

12
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£/2. Then we have the estimate

/01 or(z) sin(nmzx) dz| = ia? /A’ sin(nmz) dz

sin(nrx) dx

I\
M.Q?r
S—

S

— k N
= _E.Zlaj cos(mm)|0
=

M
2 €
nﬂ.§:|aj|< B}
Jj=1

N

By the two estimates above we have that

/ o (x)sinfnm)

/1 f(z)sin(nrx) dz| < /1 (f(x) — or(x)) sin(nrz) dz| +
0 0
<g+§:5
as desired. u

Problem 2. Consider the function f : [0,1] — R defined by

_ Jazlogx ifr € (0,1]
fle) = {0 ifz = 0

(a) Is f Lipschitz continuous on [0, 1]?
(b) Is f Uniformly continuous on [0, 1]?

(c) Suppose (pg) is a sequence of polynomial functions on [0, 1] converging uniformly to f. Is the set
A={pr|k>1}U{f} equicontinuous?

(a) No. f/(z) =logz+1on (0,1], and lim,_,o+ f'(z) = —oco. Suppose FSOC that f is Lipschitz with
Lipschitz constant L, then |f(z) — f(y)| < L|xz — y| for all z,y € [0,1]. Choose x = 0, then we

have
ol
Y
for all y € [0,1]. Choose y = eX*!, then
|6L+1 log 6L+1|

13
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a contradiction. Therefore f is not Lipschitz.

Yes. We will show that f is continuous, and therefore since f is continuous on a compact set [0, 1],
it is uniformly continuous on [0, 1] (Note that this is an explicit example of uniform continuity
being weaker than Lipschitz continuity).

Clearly xlog x is continuous on (0, 1] since the product of two continuous functions is continuous.
By L’Hopital’s rule

log x

i = lim z=0
e—0t 1/x  z—0t

so f is continuous on [0, 1].

Yes. Let € > 0, « € [0,1] be given and choose 6 > 0 such that |f(x) — f(y)| < €/3 < € whenever
|z —y| < d. We will show that |pr(x) — pr(y)| < € whenever |z —y| < J, for all k. Choose N € N
such that

3

o= fll < 5

€
= Ipe(z) — f2)] < 3
for all x € [0,1] whenever k > N. We set
AN::{pk|k‘<N}CA

it is clear that Ay is equicontinuous since it is a finite collection of uniformly continuous functions
(take the infimum of the §’s). Because of this it is clear that if A\ Ay is equicontinuous, then so
is A. WLOG we assume N above is 1 and Ay = &.

We have

Ipe(®) — pre(Y)| < |pe(x) — f(@)| + |f(2) = fW)] + [ f(v) — pr(y)]
<sHzHc=e

whenever |z — y| < € as desired. Therefore A is equicontinuous.

Problem 3. Show that for every f € C(T') and € > 0 there is an initial condition g € C(T') for which
there is a solution u(z,t) to the heat equation on a ring with u(z,0) = g(x) and |u(z,1) — f(z)| < e
for every z € T'.

This is an interesting question because the heat operator is not uniquely reversible in time. This questions
asks us to find a given initial data which leads to a later state prescribed by the problem, but in fact there
are infinitely many such inital data satisfying the e criterion. Any perterbation from our solution which
decays sufficiently rapidly in time will also be a solution.

14
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Problem 4. Consider the functions fy(z) = (27)7' 3y <y €. Show that if g € L*(T), then
(fx *g) — g in L%

A simple calculuation gives

[k|<N
1 1IRT 1 —1
v e’“T/e Mg(y) dy
T k<N T
1 ikx
= — e g, = Sn(x)
2T

Since {e?**}cz is an orthonormal basis of L?(T'), we can expand g as

g(x) =D (™ g)2e™™

keZ

where equality is taken in the L? sense. Because (e, g)r2 = [ g(y)e "*¥ dy = g, we can sce that
Sy — g in the L? sense as N — oo. |

Problem 5. Show that for any u € L'(RY)

T [fu(z + 1) = u(@)]| 1 sy = O

We begin by proving a well-known lemma for definiteness.
Lemma: If f € L' and fi € L' with f; — f pointwise, then ||f — fx||;. — 0 as k — oo.
Proof: Clearly f — fr € L*. We have |f — fi| <|f| — |fx| so by dominated convergence

=0
s

el
Jim 117 = fllys = £ = Jim 1o

O
We now prove the proposition. Since C§°(R?) dense in L'(R?), let ¢y (x) — u(z) as k — oo for
all z € R%. Then by the lemma we have that ||¢x —ul|;1 — 0 as k — 0. Furthermore, since )y,
is continuous ¥ (x + h) — Y (z) pointwise as h — 0. Consequently ||¢x(x + h) — ¢Yi(x)||;. — 0 as
h — oco. Finally, note that i, (x + h) — u(z + h) by a simple change of variable and the translational
invarience of the Lebesgue measure on R¢.
Let € > 0 be given and fix some h € R%. Choose k such that

lu(z +h) =+ B)| 1 = |[dp(2) —u(@)||p <e

15
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Then we have that

[u(z + ) —uw(@)]| 1 < ||u(z + ) = e + )| g2+ [[Pe(z + h) — r(@)|]
+ |vw(z) = ul@)|]
< 2e+ [V (x + ) — Yr (@)l 12

Taking the limit as h — 0 of the above inequality we arrive at

i [lu(e + ) = u(z) |, < 22

by the convergence of ¥)(x + h) to 1 (z) in L. Since ¢ > 0 was arbitrary the result is immediate. W

Problem 6. Let Q:={ (z,y) |y > 0,2 € R}. Let f € C}(R?). Show that

2
/R |f<x,o>2dx<2< / (&, v)? dedy + / ]ggj@,y) dxdy>

First, let ¢ € C}(R?) be non-negative. Then by the fundamental theorem of calculus and the vanishing
of ¢ at infinity we find that

/R // 8y dydx——Q// cpa pdydx

2 — | dydx
QWI‘ay’ Y

Applying young’s inequality finally yields

/R 2(2,0)d /|<p|2dydx—|— dedx (%)

We now consider an arbitrary function f € CJ(R?). We have that |f| = f+ + f— where f and f_
are respectivly the positive and negative parts of f. We also have

P = f3 4201 f-+ 2 <2002+ £2) < 2fP (%)
we also note the following

5= (), (3)
~ (gt —f-)>++ (50— 1)
St - f—)‘ - ((,fym - f_)>_ " <§y<f+ - f_)>

o1
dy

16
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where we have used the fact that |¢| = ¢4 +t_. This implies that

af I’ of |, |or- of
'ay Q(‘ay%y’)“\ay

2

using our estimate from above.
We now estimate

/|f(a:,0)|2dx<2/ £ (2,0) + f2(2,0)dr by (+%)
R R

2
<2 f_’idyda:+2/ <8f+> dyde+2 | f*dydx
Q o \ Oy Q

N gy by s

+2/Q<ay> dy d by ()

o[ g o\, (01
—2/9er—|—f,dydx—i—2/Q (8y> +(8y> dy dx

2
<2/ \f|2dydx—|—2/ or dydr by (x) and (x x *)
Q aldy

as desired.

(o )

17
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Spring 2017

Problem 2. Suppose that X is a metric space with metric d such that every continuous functional
f X — R is bounded. Prove that X is complete.

Suppose not, then there is a Cauchy sequence (z;) € X such that z; — xo for no 29 € X (Note that
this also means NO cauchy sequence in X converges to the point 2 € X). Then consider the function

o(z) = % where d(T,z) := lim d(zk, )

f, 37) k—o0

Since () is Cauchy, it is bounded and by the triangle inequality together with the positive-definiteness
of d, ¢ is well defined for all x € X.

Furthermore ¢ is continuous since given any x € X, € > 0, choose § < d?(%, z)e/2. Then whenever
d(x,y) < ¢ we have

_ _ d(fv y) B d(f7 l‘) d(y,l‘) d(y7$)
[p(z) = ey)l = d(Z,y)d(T, ) < d(Z,y)d(Z, ) S min{d(Z, y), d(T, z)}?
< 2d(z,y) <e
d*(7, x)

Finally ¢ is unbounded since for any M € R>? we can choose m € N such that limy_, o d(zg, ) <
1/M so that p(x,,) > M. |

Problem 3. Let A be a linear operator on a Banach space B mapping any strongly convergent sequence
to a weakly convering one. Prove that A is bounded.

We assume that A : B — Y where Y is Banach (it is not stated in the problem). Since a linear operator
between Banach spaces is bounded if and only if it is continuous, we show that A is continuous.

Recall that the closed graph theorem says that if I'(A) := { (v,Az) € BxY |z € B,Az €Y } is
closed in the product topology if and only if A is continuous.

For any sequence zp — x in B, Az, — y in Y. y = Az since weak limits are unique and for
any sequence rj, — x, the sequence (z1,x,29,x,---) also converges to x and (Ax;, Az, Axq, Ax,---)
converges weakly to Az since the subsequence (Ax, Az, Az, ---) converges to Az and the weak limit
must agree.

Therefore (xx, A) weakly converges to (x, Az) in the product topology and I'(A) is weakly closed
and therefore strongly closed. Therefore A is continuous and hence bounded. |

Problem 5. Prove the Riemann-Lebesgue Lemma, namely if f € L'(R?), then f(é“) —0as [£| = 0,
where

for= [ emensa) i

18




ANALYSIS: Spring 2017

K.R. Chickering

(c.f. Fall 2018, Problem 1)

Since f € L'(R?), it can be approximated in norm simple functions of ¥, € C§°(R?) such that 5, — f

(in L' as k — oo.
We estimate by Holder’s inequality

< =l (|72 oo = I1F = Wall o

‘/Rd 2 (f(x) — Yn(x)) do

We also have
1

(@

Dr(w)e 2T =
R4

Let € > 0 be given and choose k such that ||f —x||;» <e&. Then

+ ’ Y (2)e 28T dy
RA

< ‘ | (@) = @) da

<If = ¥ellp +

’/ f(x)e*%”f"” dx
Rd

Taking the limit as |£| — oo and noting the arbitraryness of €, we obtain our result. |

Problem 6. Give an example of a sequence of functions that converges weakly in L2, strongly in L',
but does not converge strongly in L. Be sure to justify your assertions.

Choose the sequence ¢y (z) = k2K (g1 /5)(z). We may take the domain to be [0,1] with the obvious

extension to R or T
First, note that ¢ € L? N L! since

1/k
||<pk\|L2:/ kdr=1< o0
0

1/k L 1
loullys = [ K72 de = i < o0

First, we show that ¢ — 0 in L?. Observe that for any ¢ € L? we have

1/k 1/k 1/2 1/k
/ k' 2p(z) de < (/ kdx) (/ 0% (x) dx)
0 0 0

1 1
S i ekl = 712

1/2

where we have applied Holder’s inequality twice; the first time with exponents 2 and 2, and the second

time with exponents co and 1.
Taking the limit of both sides proves the assertion that ¢ — 0 in L2.
Next, take the limit of the L' norm of ¢y, to see that ||¢k|[,. — 0 as k — 0 and hence ¢, — 0

strongly in L.
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Finally, because the L? norm is constant, we cannot have strong convergence to zero in L2. |
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Fall 2017

Problem 1. Prove that every metric subspace of a separable metric space is separable.

Let S be a seperable metric space with dense subset D. That is, for every = € S there is a sequence
(xr)72, with xp € D for all k with x, — x as k — co. Let M C S be a metric subspace of S. Then
every x € M, x € S and there is a sequence as before and hence D is dense in M. |

Problem 2. Let X be a Banach space with dual space X* and let A C X be a linear subspace. Define
the annihilator A+ C X* by

At ={feX*|f(x)=0forallze A}

Prove that A is dense in X if and only if A+ = {0}.

Suppose that A is dense in X and suppose for the sake of contradiction that ¢ € X* is a non-trivial
bounded linear functional in A+. Then ¢(x) = 0 for all z € A. Since ¢ is non-trivial, there is a point
y € X such that ¢(y) # 0. Since A is dense in X, there is a sequence (y)72; with y, € A for all k such
that yr — y as k — o0o. Since ¢ is bounded it is continuous and

0= klim olyr) = ¢ ( lim yk) = ()
00 k—o0

which is a contradiction. Therefore A+ = {0}.

Conversely, suppose that AL = {0} and suppose for the sake of contradiction that A is not dense in
X. Then A is a proper subset of X and a well known corollary to Hahn-Banach Theorem asserts that
for every proper linear subspace A of X there is a non-trivial bounded linear functional which vanishes
identically on A. Therefore A+ # {0} which is a contradiction. |
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Spring 2016

Problem 1. Let f(x) be a continuous function on R such that for any polynomial P(z) we have

/ F@)P(@)dz =0
R

Show that f(z) is identically zero.

This question is wrong as stated, we produce a counter example. Thank you to Alvin
Chen for finding a counter example.

Along the lines of why this doesn’t work see F2015:P6 which adds that f € S(R). Our counter example
is not Schwartz, and the mechaism we abuse uses the fact that we can get oscillations of higher and higher
frequencies to occur further and further away from the origin. Obviously if f is Schwartz or we are on a
compact set this cannot happen.

This counter example is taken from [mathcounterexamples.net|
Consider the integral

Ji = / aFe= (1702 g / Fe™® dr < oo (1)
0 0

repeated integration by parts gives the closed formula

k! klets (k+1)
Jk p— N pr—
(1 —d)ktt 25

Then if we choose k = 4n + 3 for n € Z, then J; € R and the imaginary part of the integral is zero
from which we obtain the formula

/ 2P~ sin(z) dx = 0
0

1/4

Therefore after the u-substitution x = u'/* we arrive at the integral

o0 1/4
/ uP sin(u'/*)e™* " du =0
0

for any p > 0.
Now, define the function

fla) = {Sin(wl/“)ewl“, x>0

. _l/e
—sin(z!/*)e=* ", <0

this function is seen to be continuous on R. By the above calculation, for any monomial z*, / B zFfde =
0 and the result follows. |

Problem 2. Let M be a multiplication on L? defined by

Mf(x) = m(x)f(z)
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where m(z) is continuous and bounded. Prove that M is a bounded operator on L?(R) and that its
spectrum is given by

o(M) = {m(m)’xeR}

Can M have eigenvalues?

M is a bounded operator on L? by Cauchy-Schwartz, in particular

1/2
412 = [ nle) ) o < ]~ ( / |f<x>|2do:) = llmll e 171,

Next we compute the spectrum of M. Let g € L2, then

However we also require that f be in L2, which happens when (m(z) —\)~! € L* in which case f € L?
by Cauchy-Schwartz. This means

1
< C, — < inf |m(z) — )|

en C ~zeR

zeR |m(z) = Al
which means for f to be in L? we require that « ¢ {m(z) |2 € R}. Note that this also gives that

kerm(z) — A = {0} since (m(z) — A\)f =0 = f = 0. Therefore o(M) = { m(x) ’x €ER}.
Finally, M can have eigenvalues, for example when m = 1, then 1 is an eigenvalue of M. |

Problem 3. Show that the closed unit ball of a Hilbert space H is compact if and only if dim H < oo.

Let B := B1(0) C H be compact and suppose, for the sake of contradiction, that dim H = co. Then
H has an orthonormal basis (uq)qez for some infinite set Z. Certainly u, € B for all & € Z. Since H
is a metric space, and B is compact, B is sequentially compact and every sequence has a convergent
subsequence. Let (ug)52, be such a convergent subsequence of basis elements. We compute

Hum - unH2 = Hum||2 - (Unuun) - (Un,aum) + Hun||2 =2

s0 (ug)72, is not Cauchy and hence not convergent. This is a contradiction since we chose (ug)%2; to
be convergent. Hence dim H < co.

Conversely, suppose that N := dim H < oo. Since H is Hilbert there is an orthonormal basis
(ug)_, of H. We show that B := B;(0) C H totally bounded, and hence compact. Completeness is a
triviality, every closed subset of a Banach space is complete.

Let € > 0 be given. WLOG assume that £ < 1 (since otherwise B C B.(0)). Construct the following
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e-net. Let
N
Ny = {i;muk o<m<[—],me Z>O}
€

Each N}, can be thought of as a seqeunce of “points” in each “coordinate direction” using the geometric
intuition about R?. Then consider

the direct sum of Nj,. Clearly A is finite with |[A| < [2]", we must show that A is an e-net.

Indeed, let ¢ € B, then ¢ = Zgzl(go,uk)uk. We define oV = ZkN=1 mxux by choosing my such
that Tm < (p,ux) < & (m + 1) which we can do since € < 1 and (¢, ux) < 1 (by Parseval’s equality).
Then

N
o =N = (k) — mp)u
=1
by our choice of my, we can see that (yp,ux) —mp < &. Therefore
N N
e = M| <D (e, ur) — mu ]| < ZN =€
k=1 k=1

s0 ¢ € B.(¢") so N is an e-net of B and B is compact. |

Problem 4. Suppose that f is a function in the Schwartz space S(R) which satisfies the normalizing
condition || f[|;2(gy = 1. Let f denote the Fourier transform of f. Show that

1 ~
<
1672 Hﬁf’

2 2
o llzf 12 Ry

(c.f. Fall 2019 Problem 4)

Note: Babsen’s notes say this problem has a bad normalization but this is incorrect.
The problem as stated is correct
This is known as Heisenberg’s uncertainty principle. We have

1:/ dex:—/ xidexz—z/ ef f dx
R r dx R
then

L= 1l < 2/R 2l £11'] de

<2z fll 2 my 12 (m)
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by Cauchy Schwartz. We have by Plancheral’s identity and the properties of the Fourier transform

WF p2ry = 27 l1Ef N L2 (R

which is the desired identity. ]

Problem 6. Let H be a Hilbert space and let U be a unitary operator, that is surjective and isometric,
on H. Let [ = {v eH | Uv=v } be the subspace of invariant vecotrs with respect to U.

(a) Show that { Uw —w|w € H } is dense in I and that I is closed.
(b) Let P be the orthogonal projection onto I. Show that

1 XN
NZU’%%PU
k=1

The content of this question is the von Neumann ergodic theorem, which is proved in Hunter-Nachtergaele,
Theorem 8.35 [], and Rudin III, Theorem 12.44 [].

(a) Let vy — v, v, € I. Since U is continuous

v = lim vy = lim kaU<lim vk> =Uv
k—o0

k—o0 k— o0

so I is closed.

Next, let w € I+, wy, — w in H, and consider the sequence my = (U — I)*wy = (U* — I)wy.
Clearly my € H and then wy = (U — I)my, € { Uv—wv } veH } Since wy — w by construction
the set is dense in I+. Il

(b) We begin by noting that H = ranP @ ker P, so we may prove the theorem for the kernel and the
range seperatly. The assertion is trivial on ranP = I since Uv = v.

By part (a), let wt = (U — I)v € ker P = I+ for some v € H. Then we have
| X | X 1
k, L _ k41 kY, _ N+1
NkilU wT = Nkil(U U = N(U —U)w

which vanishes in the limit that N — 0.

Again by part (a), let (U — I)v; = w; — wt € ker P, where (U — I)w; € ker P for all j, v; € H.
Then we have

N

Z Ukwl

k=1

N

> UHwt —wy)

k=1

1
lim —

N—oo N +

N
S Ut )suwl—wju
k=1

where the first norm can be estimated using the fact that U is unitary and hence bounded on
H with operator norm ||H|| = 1, and the second norm vanishes. Taking the limit that j — 0
concludes the proof.

1
< limsup —
= N—o0 N(
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Spring 2015

Problem 1. Let H be a seperable Hilbert space. A sequence (xf) in H converges in the Cesaro sense
to x € H if the averages of its partial sums converge strongly to z, i.e., if

1
fNZNZ.%‘n—).’L‘, as N — oo
n=1

(a) Prove that if (z,,) converges strongly to x € H, then (z,) also converges in the Cesaro sense to
oy

(b) Give an example of a sequence which converges in the Ceséaro sense but does not converge weakly.

(¢) Give an example of a sequence which converges weakly but does not converge in the Cesaro sense.

This question uses an Incorrect definition of Cesaro summation.
Actual Cesaro summation is defined as

We solve the question using the given definition, which is convergence in the average, and not the real
definition of Cesaro convergence.

(a) Without loss of generality let z; — 0 (replace zj by z, — ) in H, M > N, then

1
HEM—fNIKNZHwkIK sup | |zy||
E=N M<LESN

Taking the limit as M, N — oo, together with the strong convergence of x; — 0 shows the
sequence is Cauchy and hence converges. O

(b) Counsider the sequence {1,—1,1,—1,---} in R. Recall that in finite dimensional spaces weak and
strong convergence are equivalent, so this sequence clearly doesn’t converge. It is easy to compute
the means and find that they are {1, 0,1 5,0, é,~ -}, and hence this sequence converges to zero in
the mean sense. O

()
n

Problem 2. Suppose f : [—1,1] — R is an odd continuous function such that f(—1) = f(1). Given
that fil sin(nz) f () dx for all positive integers n, show that f = 0.

Because odd functions can be written in L? as the sum of sines at various frequencies, this question asks
us to prove that the only odd function orthogonal to all of the basis functions for the subspace of L? spanned
by {sin(kz)} is 0
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Since f(—1) = f(1) = —f(—1) and f is odd, f(1) = f(—1) = 0. Consider the extension of fr of f to
the interval [—m, 7] where f, is compactly supported on [—1,1]. It is clear that f, is continuous by the
remark above together with the continuity of f. It is also clear that f, is odd, and therefore we may
expand fr into its Fourier (sine) series (where the cosine terms drop out by orthogonality to the even
basis elements of L?)

fr(z) = % i by, sin(kx)
k=1

where

™ 1
b = fr(z)sin(kz) de = [1 f(z)sin(kz) dz =0

—T

Since all of the Fourier components are zero, f is identically zero, and by the definition of f,, f =0
as desired. [

Problem 3. Let P(z) : R — R be a polynomial of degree n. Show that there exists a constant C
depending only on n such that |P(§)| < Cf_ll |P(z)|? for all £ € (—1,1).

This question is wrong as stated.

We prove that this is impossible. Suppose such a constant exists, then for f(x) =27™ € Iy, m > 0 we
have 27" < C Hf||i2 = C27™%! which implies that C > 2™, Therefore, for any C, we can choose m large
enough to violate the supposed inequality. O

However, we CAN prove what the question intended to ask, which is

P (@) oo (—1,1) S 1Pl z2(-1,1y

for P € II,,, which is true.

Problem 4. Let fj : [0,1] — R be a sequence of measurable functions. Suppose that
() ||fk||L2 < 1 for all k.
(i) fx — 0 a.e.

Show that

1
1im/0 fe(x)dz =0

k—o0

Let € > 0 be given. By Ergoroff’s theorem we may choose a set E' C [0, 1] which satisfies |E| = ¢ and
frx — 0 uniformly on [0,1] \ E.
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We now estimate

1
dm [ ey do = lim ( /M\E fula)da+ [ fk<x>dm>

since the L? norm is controlled by 1. Since ¢ was arbitrary this proves our result.

= lim/ fi(z) dx ((By unif. conv.))
k—oo /B

< lim (B2 | fil e (By Holder 2-2))
k—o00

< 51/2

Problem 5. Find the Fourier series of the 2L-periodic extension of

) if x €10, L]
f(z) = {0 if 2 € (~L,0)

Show that

2 > 1
8 ZO (2m + 1)2

m=

For purely computational results like this one see Stein and Shakarchi I [], and Bleecker and Csordas [].

One can easily check their answers using Desmos, Matlab, or Mathematica.

Recall that the Fourier series expansion is given by

J@) = (1) + %i [ (”Lm) bsin (MZH

k=1

where (f) := ag/2L is the spatial average of f on [—L, L] and

L L
ay = /L f(z) cos (T) dx, by, = /L f(z)sin (?) dx

It is clear that ag = fOL xdr = L?/2. We integrate by parts to easily obtain

L kx L . wkx\ |L L2 ‘ wkx\ |L
ap = ; T CoS T dx:%xbm T ‘0+W2k2cos I ‘0

and

(71)k+1L2
wk
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we can now construct our Fourier series, which is

=t e () e ()

Choose L = 7 and evaluate f(0) = 0, and note that in this case the sine terms vanish, the cosine
terms are all 1, and we are left with

VS U S VRN ST RS S S
0*4"";77162(( D) 1)74 kazoﬂ(ﬂc—l—l)?

as desired. m
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Fall 2013

Problem 6. Let S(R?) be the Schwarz space. Show that S(R?) C LP(R?) for any 1 < p < co.

Recall that the Schwarz space is defined as
sty i= { FeC=(®Y| s DAl ol =01, |
zeR4

where  is a multi-index.

We note that when o = 8 = 0, then the Schwarz condition implies that f € L>°(R?). Furthermore,
for any a = 0,1,---, 2°f € L=(R?).

We estimate the LP norm of f for 1 < p < co. Fix any € > 0, then we compute

/ Ifl”dw=/ Iflpdw+/ PP da
Rd B.(0) R4\ B.(0)

€
||

Sea I mien + [ 0

RO\B.(0) |7

/P da
S e oy + |2 F e gy < 00

since 1/|z|% is integrable away from the origin and by the remark above. Therefore f € LP for any
1<p< oo |
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Spring 2012

Problem 1. For u € L'(0,0), consider the integral

_ [T u)
v(x)—/o x+ydy

defined for x > 0. Show that v(x) is infinitely differentiable away from the origin. Prove that v’ €
L'(e,00) for any € > 0. Explain what happens in the limit as ¢ — 0.

‘We have

d* A e [0 u(y)
. _ v —(_ I _ )
dxkv(x) /0 p $+ydy (-1) k‘./o T r g dy

where the interchange is justified by dominated convergence since u(y) € L' and |u(y)| > |u(y)/(xz+y)*|
for all x > 0,y < 0,k (see Libeniz rule).
Since v is differentiable, v’ is continuous and by the fundamental theorem of calculus

/:O v'(z)dr = —v(e) = —/OOO uly) dy

ety

We have the estimate

oo o0 d oo
/ |1/(:c)|dx:/ —/ uly) dy‘ dx
5 € dx 0 T+ Yy
[,
€ 0 |JJ + y|
oo 1 o0
<[ s [ )y o
/5 ye(0,00) 12 + 42 Jo

<1
— |‘u||L1(07m)L ﬁdﬁf

1
= HuHLl(O,oo) -

so that v' € L!(g, 00).
In general it is not the case that v/ € L(0,00); for example u = 27 '/2 € L'(0,00) but v’ is
non-integrable near 0. Criteria for integrability on v’ amount to showing that

(o) o
hm/ u(y) dy:/ u(y) dy
=0Jo 1Y 0 Yy

For example, if u/y € L'(0,00) than by monotone convergence the interchange above is justified and
v' € L0, 00). |
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