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Intro to Conic Duality

SDP_subspace_test (2000, 5, ’'sedumi’)

m)gn (C, X)
(SDP-P) st A(X)=b
x €8S
(Ai, X)
(C,X) =tr(CTX) AX):= ;
(Am, X)

S’} : positive semidefinite matrices

A€ SP%ori=1,...5
2000

CESJr

All dense



Introduction
000

Intro to Conic Duality

Conic duality

Recall the primal and dual linear programs

min ¢’x max b'y
X y?z
(LP-P) st. Ax=0b (LP-D) s.t. c— ATy =z
x>0 z>0

Question: How can we generalize the inequality x > 0 and preserve

» symmetry (x > 0 and z > 0)?
> barrier properties (interior point tools)?
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Intro to Conic Duality

Intro to conic duality

Definition

Aset L C R"is aconeif for all x € K and a > 0, we have ax € K.
Definition

A cone K is proper if it is closed, pointed (X N —K = {0}), and
nonempty (K + (—K) = R").

Examples

1) K=Ry ={xeR"| x>0}

2) K=Kz ={x=(x,X) e RxR™"|[|X]| < x0, X0 > 0} (draw!)
AKA the Lorentz cone, or “ice cream cone”

3) K=S7 ={XeR™"| X =0}



Introduction
ocooe

Intro to Conic Duality

Intro to conic duality
Definition
Given a cone IC C R”, the dual cone of K is the set

K*={y|x"y >0forall x € £}

Examples

) K=R, = K*=K
2) K=K, = K*=K
3) K=S7T = K*=K

Self-dual cones: primal-dual symmetry, great for optimization methods.
Theorem: Every real, self-dual cone is a Cartesian product of R, Ko,
and 7.
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Conic Duals

Conic primal and dual

Let KC be a cone in R”, A(+) a linear operator, and (-, -) an inner
product.

min (¢, x) max b'y
X >
(CP-P) st A(x)=b (CP-D) st c—A'(y)=z
xeck zeK*

Conic duality includes:
» (LP) linear programming
» (SOCP) second-order cone programming
> (SDP) semidefinite programming
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Conic Duals

Second-order cone and semidefinite programming

min ¢’ x max by
X i
(SOCP-P) st. Ax=b (SOCP-D) st. c—Aly==-
x €Ky ze ko
. X T
min (C, X) r?%x b'y
(SDP-P) st. A(X)=b (SDP-D) st. C—A*(y)=2Z2
X eSS ZeS]

(LP) C (SOCP) C (SDP) C (CP) C convex optimization
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Talk Outline

1. Introduction
2. Linear programming and conic duality
» Lagrangian, finding duals
» Conic duality theorem
3. Second-order cone programming
» Jordan algebra, KKT conditions
» Barrier method, interior point
» ADMM, 1st order projection method
4. Semidefinite programming

» KKT conditions
» New(-ish) subspace method
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Intro

Recall the (LP) primal and dual

min ¢’x max b’y
X .y?z
(LP-P) st. Ax=0b (LP-D) s.t. c— ATy =z

x>0 z>0
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Duality
min ¢’x min (¢, x)
X X
(LP-P) st Ax=b (CP-P) st A(x)=0b
x>0 x el
Questions:

» How to find the dual of (dualize) (LP), (CP)? (A: Lagrangian.)

» How do primal and dual feasibility/solvability inform each other?
» Can primal-dual be solved simultaneously? (A: Yes.)

» Why? How? (A: Cone symmetry.)

» |s this advantageous? (A: Yes!)

10/40
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LP Duality

The Lagrangian

min ¢’x
X
(LP-P) st Ax=b
x>0

Definition
Given the primal linear program (LP-P), the Lagrangian is

L(x,y,2) =c'x —y"(Ax —b) — x"z
where y is the multiplier (dual variable) for Ax = b, and z is the
multiplier for x.
» Frame primal and dual problems.

» Prove duality results, develop algorithms.
» Show necessary and sufficient conditions for solutions (KKT

systems). a0
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LP Duality

(LP) duality via the Lagrangian

L(x,y,2) =c'x —yT(Ax —b) — x"z

laim: (LP-P) — mi ) — .
Claim: (LP-P) min rr}g L(x,y,z) and (LP-D) max szlg L(x,y,2)
zz
Define dual function g(x) = max L(x,y,z)
o
Ax#b = g(x)=+o0
= Ax=0b

= ming(x) = min maxc’x — x
X axep 220

Tz

12/40
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LP Duality

(LP) duality via the Lagrangian

L(x,y,2) =c'x —yT(Ax —b) — x"z

Claim: (LP-P) = min max L(x,y,z) and (LP-D) = maxmin L(x, y, z)
X 9

¥z x>0
z>0
Define dual function g(x) = max L(x,y,z)
zéO
Anyx; <0 = g(x) =+
= x>0
Any x;zi >0 = inner max not attained
— min maxc'x — x"z= min ¢'x
x>0 z x>0
Ax=b Ax=Db

idea gives (LP-D) = in L
Same idea gives ( ) n;%xgrg (x,y,2)

12/40
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LP Duality

Interpretation of Lagrange multipliers

Lx,y,z2) =c'x—y"(Ax —b) — x"z

LP-P) mi ] -
(LP-P) min rg;: L(x,y,2) (LP-D) - maxmin L(x,y,2)
zZ2

> Inner max —yi(al x — b;): “soft” penalty on a/ x — b; # 0.

» Pointwise infimum implies dual problem is concave even if primal
is not convex.

13/40
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LP Duality

Theorem (LP Duality)
Let R} be the nonnegative orthant inR" with the primal-dual pair

min ¢’x max b'y
X v,z
(LP-P) st Ax=b (LP-D) st c—Aly==z
x € R zec R

1) (duality symmetry): The dual to (LP-D) is (LP-P).

2) (weak duality): If x is primal feasible and (y, z) are dual feasible,
thenb™y < cTx.

14/40
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LP Duality

Theorem (LP Duality)
Let R} be the nonnegative orthant in R" with the primal-dual pair

min ¢’x max b’y
X .y?z
(LP-P) st Ax=b (LP-D) st c—ATy=z
x € R ze R}

3) The following are equivalent:
i) (LP-P) is feasible and bounded below.
i) (LP-D) is feasible and bounded above.
i)y (LP-P) is solvable.
iv) (LP-D) is solvable.
v) Both (LP-P) and (LP-D) are feasible.

Key: 2) and 3) give optimality conditions.
Ax=bc—ATy=zx,zeR andx"z=0

— (X7Y7Z):(X*7y*72*) 14740
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LP Duality
KKT conditions for LPs
Definition
The following are the Karush-Kuhn-Tucker (KKT) optimality conditions
for (LP)
Ax = b primal feasability
x > 0 primal feasability
c—Aly = 2z dual feasability
z > 0 dual feasability
x'Tz =0 complementarity

» linear (easy) constraints: Ax = b, c — AT =z
» nonlinear (hard) constraints: x,z > 0, x"'z =0

Coordinate-wise handling of x, z > 0: Simplex method.
Interior point: Smooth nonlinear constraints with twice-diff'able penalty.
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LP Duality
KKT conditions for LPs
Definition
The following are the Karush-Kuhn-Tucker (KKT) optimality conditions
for (LP)
Ax = b primal feasability
x > 0 primal feasability
c—Aly = 2z dual feasability
z > 0 dual feasability
x'Tz =0 complementarity

» linear (easy) constraints: Ax = b, c — AT =z
» nonlinear (hard) constraints: x,z > 0, x"'z =0

Question: What other classes of primal-dual pairs offer symmetric
duality, nice optimality (KKT) conditions, etc.?
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Conic Duality

General conic duality

Let K be a cone in R” with the primal-dual pair

min  (c, x) max by
X ”
(CP-P) st. A(x)=0b (CP-D) st. c—A'(y)=z
xek ze K*

Then we have the Lagrangian
L(Xayv Z) = <Ca X> - yT(A(X) - b) - <X7 Z>
Recall K* = {y | x"y > 0forall x € K}

- i P-D inL
(CP-P) min n}]%x L(x,y,z) (CP-D) max )r(rg’r% (x,y,2)
zeK*

16/40
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Conic Duality

Theorem (Conic Duality)
Let KC be a cone in R" with the primal-dual pair

min  (c, x) max by
X b
(CP-P) st A(x)=b (CP-D) st c—A(y)=z

1) (duality symmetry): (CP-D) is conic, and the dual to (CP-D) is
(CP-P).

2) (weak duality): If x is primal feasible and (y, z) are dual feasible,
then b’y < (c, x).

17/40
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Conic Duality

Theorem (Conic Duality)
Let KC be a cone in R" with the primal-dual pair

min  (c, x) max by
X b
(CP-P) st A(x)=b (CP-D) st c—A(y)=z

3) (strong duality with Slater condition): If (CP-P) is bounded below
and strictly feasible (3x with A(x) = b and x € int(K)) then
(CP-D) is solvable with zero duality gap (and vice versa).

4) If (CP-P) is bounded below and strictly feasible, then x is (CP-P)
optimal and (y, z) are (CP-D) optimal if and only if both hold

a) (zero duality gap): b"y = {(c, x), and
b) (comlementary slackness): (x,z) = 0.

17/40
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Conic Duality

Symmetric cone duals

min  {c, x) max by
X Z
(CP-P) st A(x)=0b (CP-D) st. c—A*(y)==z
xek zeK*

Goals:

» Apply conic duality results to symmetric cones:
K=K, K=87?
» Utilize cone symmetry (* = K) in solver methods.

18/40



Intro to SOCP

The second-order cone program (SOCP)

min ¢’x max by
X >
(SOCP-P) st Ax=0b (SOCP-D) st. c¢c—ATy==z
x € Ko ze Ky

Recall ICZ = {X = (Xo,)_() eR x Rn_1 ‘ ||)_(|| < Xo, X0 > 0}
x € Ko handles general quadratic constraints:

Examples
T A b;
0 bl < o = () et (0 ek
i i
2) x'Qix+b/x+¢ <0 <
-
H +b X+CI/2H 1—bTX_C,)/2

Qix

19/40



Intro to SOCP

Application

v

filter design
> antenna array weight design

v

truss design

v

robust estimation

v

model predictive control

20/40



Intro to SOCP

KKT conditions for SOCPs

Ax = b primal feasability

x € K primal feasability
c-Aly = =z dual feasability
z € K dual feasability

xTz =0 complementarity

Question: How to handle nonsmooth x, z € K, x'z =0
Answers:
» Jordan algebra with smooth product x o z
— Barrier/penalty problem and interior point method
» Projection equivalence:
x,z€Kpand x"z=0 < MNi(x—2z)=x
— 1t-order problem and ADMM/projection method

21/40
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SOCPs: Jordan Algebra and Interior Point

Jordan algebra of the second-order cone

Definition
Given x = (xg,X),z = (2,2) € R x R"', the Jordan product is
T T
Xxoz= ( Xz _> = Arw(x)z, with Arw(x) := [{0 X ]
XoZ + ZpX X Xxol

Basic Properties:
» (product identity): e = (1,0), x o e = (X, X)
> (commutative): xoz =zo x

» (bilinear): linear in x for fixed z and vice versa

» (non-associative): x o (y o z) # (x o y) o z in general
(

» (Jordan associative): x% o (zo x) = (x® 0 z) o x

22/40
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SOCPs: Jordan Algebra and Interior Point

SOC spectral decomposition

XoZ + ZoX X Xxol

xoz= ( X'z ) —Aw(x)z  Aw(x) = [XO *T]

Jordan product o induces spectral decomposition of Kz (like S )

_ 1 v=Xx/|lx X#0
)\1’2:X0:FHXH7 V1,2:;<:FV> St{ /H H 75

v any unitvector x =0

Properties: For all x € Ky,

> X = AV + Ao, with A; > 0 and V1TV2 =0,
(hence notation x =, 0)
x € int(ICz) <= \; > 0, (leads to barrier notion)
tr(x) = A1 + Az, det(x) = M2 = x5 — ||X]/?
x 1= )\1_1v1 + )\2_1 v, (x Tox=e)

x1/2 .= )\1/2V1 + )\;/2‘/2, (X1/2 ox'/2 = X)

v

v

v

v

23/40
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SOCPs: Jordan Algebra and Interior Point

Jordan product and complementarity condition

Goal: Handle x, z € K, and x" z = 0 “smoothly”.

The following are equivalent:
) x,z€Kpandx"z=0
i) x,ze Koandxoz=0

(Proof by picture!)
Great news: Swapping x'z = 0 for x o z = 0 gives

1. twice-differentiable term x o z (for x, z € int(K7))

2. nconstraints, square Newton system

24/40
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SOCPs: Jordan Algebra and Interior Point

Log barrier: ¢xc(x) := — Xd: log A\j, dom(¢x) = int(K)

i=1
Plot of log barrier for rho = 1, 0.5, 0.05

rho*log(x)




SOCPs

[e]e]e]e] lelele]e]

SOCPs: Jordan Algebra and Interior Point

SOC log barrier

Log barrier: ¢xc(x) := — i log A\ = —log(x3 — ||x]/?)
i=1
Vor(x) = —x""=—(A\"vi + ;')
V2¢ic(x) = Q(x)™" = Q(x7 ")
(Q(x) := 2Arw2(x) — Arw(x2) = (2xxT — (xTJx)J))
Note, (x, z) complementary if and only if one of the following holds:
» x =0,z €int(Kz)
» z=0, x €int(Ky)
» x,z € 0(Ky)
Thus ¢ic(x) or ¢x(z) — o0, as (x, z) — (x*,z%)

26/40
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SOCPs: Jordan Algebra and Interior Point

SOC central path

min  ¢"x + po(x)
X
(SOCP-P), st Ax=b
x € Ko

(central path): {(x(p), y(p), z(p) | p > 0)}

27/40
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SOCPs: Jordan Algebra and Interior Point

SOC central path

min  ¢"x + po(x)
X
(SOCP-P), st Ax=b

x € Ko
» v
\ ‘ \‘ //
7 / - /
/ - \ / .

Question: How to build a nice Newton system?

Ans: Penalize dual z instead.
28/40
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SOCPs: Jordan Algebra and Interior Point

Barrier KKT conditions and Newton system
LP(X7y7 Z) = CTX - yT(AX - b) - XTZ - p¢(2)

1

V:L,=—x+pz= =0 < xoz=pe

c—Aly—z 0
(SOCP-KKT), Ax — b = o
Arw(x)z — pe 0

wh = (xT,yT,zt) = (x + Ax,y + Ay, z+ Az), M = V2L, (w)

0 AT I Ax c—Aly—z
MAw = A 0 0 Ay| = b— Ax =
Arw(z) 0 Amw(x)| |Az pe — Arw(x)z

I'x

29/40
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SOCPs: Jordan Algebra and Interior Point

Barrier KKT conditions and Newton system

0 AT I Ax re
A 0 0 Ay| = |ry
Arw(z) 0 Amw(x)| |[Az ry
» (iteration): Generally just take one Newton step per p
» (factorize and pivot): Arw(x) sparse

(
(
> (conditioning): cond(M) ~ cond(Arw(x))
> (convergence): Residuals &~ O(y/emacn) = 1078

Question: How to handle large problems? (n >> 1,000)

30/40



SOCPs: A First-Order Method

ADMM: alternating direction method of multipliers

min  f(x) + g(z)
st. Ax+Bz=c

Question: How to apply to KKT conditions on SOCP?

Ax = b primal feasability

x € K primal feasability
c—Aly = =z dual feasability
z € K dual feasability

xTz =0 complementarity

(hint): x,z € Kpand x"z =0 <= Mi(x —z) = x

31/40



SOCPs: A First-Order Method

ADMM applied to SOCP

Homogeneous embedding of SOCP (self-dual form), Qu = v
z 0o AT c] [x
vi=|0|=|-A 0 b| |y| = Qu
K —cT —p" 0] |7
» (original variables): (X, ¥,2) = (x/1,y/T,z/T)
» (7,k) = (1,0) recovers standard primal-dual
» (7, k) act as primal-dual feasibility certificates
C=KxR"xR;, C*=Kx{0}" xRy

o _ (0 ifxe$S
(indicator): ds(x) := {+oo else

min  dcxex (U, v) + dqu=v(U; V)
st. (u,v)=(0,7V)

32/40



SOCPs: A First-Order Method

ADMM applied to SOCP

min  dexex (U, v) + dqu=v(U; V)
st (u,v)=(0,V)

(A, p1): dual multipliers from ADMM

(@, 77) = Maumr(u+ A v+ 1)

U+ = I'IC(E/+ — )\)
v = Ne(v" — 1)
AT = =Tt 4 ut
ut = p— vt vt

» (implementation): Extremely easy, O(100) lines of code

I AT
—-A | ]
> (iterations): Very cheap, one backsolve and one projection

» (main cost): Single initial factorization of M = [

33/40



SDPs

State Primal and Dual SDP

min (C, X) max by
X 74
(SDP-P) st A(X)=b (SDP-D) st. C—A'(y)=2Z
X es? Zesh
<Ai7 X) m
(C.X)=tx(CTX) AX):=| A (y) = 20 viA
i=1

<Am’X>

34/40



SDPs

SDP Applications

> matrix recovery

> eigenvalue optimization
m

» anything with a linear matrix inequality (Ay + >_ y;A; = 0)
i=1



SDPs

SDP KKT conditions

AX) = b primal feasability

X € S primal feasability
c—A(y) = Z dual feasability
Z € S dual feasability

tr(X7Z) = 0 complementarity

(barrier): XZ = pl, (like SOCP x o z = pe)

C—A(y)-2Z 0
(SDP-KKT),, A(X) = b = o
XZ — pl 0

» (factorize/pivot?): Unlike Arw(x), rank(X) unknown
> (question): How to solve large (SDP) with (possibly) low-rank X*?

36/40



A Subspace Method

SDP subspace method [WW]

Goal: Find “optimal” k—dimensional subspace V

» Vi =span{wv,..., v}, k largest eigenvalues of X*

» Optimize over smallest space possible
Key observation:

» X*,Z* = 0,(X,Z)=0

= ran(X) L ran(Z) =ran(C — A*(y))

Iteration-wise goals:

» Want Vx — V¢

» V7T find \(C — A*(y)) << 0 and toss \(C — A*(y)) >0

» yT: cheap update (i.e., smallest subspace SDP solve)

37/40



A Subspace Method

SDP subspace method [WW]

Algorithm

1. Initialize: dual variable yy, V subspace of R”
2. Foriter = 1 :iter_max
» Set V* = minimal/nonpositive eigenvectors of (C — A*(y))

vV vy vy VvYy

Toss any v; € V with v/ (C — A*(y))v; >> 0

Set V = orth[V, V]

Build subspace problem: AY = VTA;V, CV = VTcV
Solve tiny SDP: [X, y] = SDP solver(A, b, CV)

Test for convergence

38/40



A Subspace Method

SDP subspace method [WW]

SDP_subspace_test (2000, 5, ’subspace’)
Current method:

» Not tossing bad v;’s
» Not using subspace method for y € R"”
» Using fixed dimesion update for V'
Only known reference (I could find): Olivera, 2002
» Only rank 1 updates
> no theoretical results
» no X basis finesse

39/40



A Subspace Method

Thank you!!

40/40
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